Finite Element Simulation of Bone Microstructures
نویسندگان
چکیده
The geometric construction of finite element spaces suitable for complicated shapes or microstructured materials is discussed. As an application, the efficient computation of linearized elasticity is considered on them. Geometries are supposed to be implicitly described via 3D voxel data (e. g. μCT scans) associated with a cubic grid. We place degrees of freedom only at the grid nodes and incorporate the complexity of the domain in the hierarchy of finite element basis functions, i. e. constructed by cut off operations at the reconstructed domain boundary. Thus, our method inherits the nestedness of uniform hexahedral grids while still being able to resolve complicated structures. In particular, the canonical coarse scales on hexahedral grid hierarchies can be used in multigrid methods.
منابع مشابه
An investigation of tensile strength of Ti6Al4V titanium screw inside femur bone using finite element and experimental tests
The geometric optimization of orthopedic screws can considerably increase their orthopedic efficiency. Due to the high geometric parameters of orthopedic screws, a finite element simulation is an effective tool for analyzing and forecasting the effect of the parameters on the load-bearing capacity of different types of screws and bones. Thus, in the present study, the tensile strength of a typi...
متن کاملImmediately loaded Xive and Nisastan implants the effect of macro-design on distribution of strain in surrounding bone: A finite element analysis
Immediately loaded Xive and Nisastan implants the effect of macro-design on distribution of strain in surrounding bone: A finite element analysis Dr. A. Fazel * - Dr. SH. A. Alai ** - Dr. M. Rismanchian *** *Associate Professor of Prosthodontics Dept., Faculty of Dentistry and Dental Research Center, Tehran University / Medical Sciences. **Assistant Professor of Prosthodontics Dept., Faculty of...
متن کاملA random field model for generating synthetic microstructures of functionally graded materials
This article presents a new level-cut, inhomogeneous, filtered Poisson random field model for representing two-phase microstructures of statistically inhomogeneous, functionally graded materials with fully penetrable embedded particles. The model involves an inhomogeneous, filtered Poisson random field comprising a sum of deterministic kernel functions that are scaled by random variables and a ...
متن کاملStudy the Formation Process of Cuboid Microprotrusion by Glass Molding Process "2279
This paper investigates the formation process of a typical microstructure in the glass microfluidic chip, i.e., cuboid microprotrusion, by the soda-lime glass molding process (GMP). The finite element models on the platform Abaqus/Standard were established for simulating the glass molding process. The glass viscoelasticity at pressing temperature was described by the General Maxwell model. The ...
متن کامل